

Utilisation des légumineuses à graines

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 201

Des graines riches en protéines Composition en éléments nutritifs • Des graines riches en protéines et en amidon (pois, féverole, vesces, haricots...), Des graines riches en protéines et en lipides

(Lucia activité de l'Alleria activité de (lupin, soja, arachide): trituration, Protéines riches en lysine, pauvres en Méthionine, cystéine et (p1000 MAT) tryptophane • Polysaccharides non amylacés (lupin) Présence de facteurs antinutritionnels (FAN) • Tanins dans les pois et féveroles à fleurs colorées : baisse de digestibilité de l'énergie et des protéines, Variabilité des teneurs en tanins, vicine et convicine selon les variétés de féverole et lupins (réduction valeur énergétique notamment en volaille), Soja: facteurs antitrypsiques (éliminés par trituration ou extrusion) Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

Utilisation des légumineuses à graines en élevage porcin et avicole

Valeur nutritionnelle

- Valeur énergétique élevée et intermédiaire entre celle du Tx soja et celle du blé,
- Carence relative en AA soufrés, Thr et Trp supplémentation nécessaire

Application de traitements technologiques

- Une mouture fine du pois (et de la féverole) améliore la digestibilité,
- Décorticage des féveroles pour éliminer les FAN,
- Traitements thermiques pour inactiver les FAN thermosensibles

Utilisation dans les rations

 Incorporations significatives si l'aliment est présenté en mouture fine, après élimination ou abaissement des FAN, et prise en compte de l'équilibre des AA

	Pois	Féverole	Lupin blanc
Porc croissance	30% et < 60-70%	< 15%	< 10%
Porcelet sevré	< 20 à 30%	< 15%	< 5%
Truie	< 20 à 30%	< 10%	< 10%
Poulet chair	20%	25%	20%

(nombreuses études es datant des années 1980)

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

5

Utilisation des légumineuses à graines en élevage piscicole

Spécificité de l'alimentation des poissons produits en Europe

- Besoins élevés en protéines : 38 55% ration,
- Utilisent mal l'amidon et les fibres : ne pas dépasser 20% (10%) dans les aliments

Valeur nutritionnelle

• Concentration en protéines modérée en regard des besoins des poissons

Application de traitements technologiques

• Intérêt de l'extrusion et du dépelliculage pour concentrer la protéine et éliminer les fibres et les FAN

Utilisation dans les rations

- Utiliser différents produits végétaux en mélange afin de limiter les effets indésirables de chacun,
- La part de produits végétaux peut représenter 60% (saumons), 65% (truite et poissons marins) et presque 100% (carpes, tilapias) de l'aliment,
- Les protéagineux sont maintenant une source de protéine incontournable malgré leur utilisation délicate

rres Terres Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

Utilisation des légumineuses à graines en élevage de ruminant

Valeur nutritionnelle

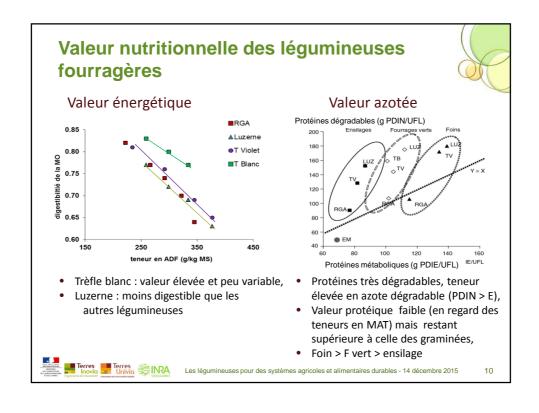
- Valeur énergétique égale ou supérieure à celle du blé (notamment lupin),
- Valeur azotée (95 à 130 g PDIE/kg MS) très inférieure à celle du Tx Soja du fait de la forte dégradabilité ruminale des protéines,
- Teneur en lysine digestible (% PDI) plus élevée que celle du Tx soja

Application de traitements technologiques

- Intérêt de traitements pour réduire la dégradabilité des protéines,
- Conditions de traitement à adapter selon les graines,
- Le toastage peut doubler la valeur de la graine

Utilisation dans les rations

• Introduction possible jusqu'à 4 à 5 kg de graines (15 à 20% de la MS) dans la ration en substitution des tourteaux sans affecter les performances



Utilisation des légumineuses fourragères

Valorisation des légumineuses fourragères conservées en élevage laitier

Les grandes légumineuses (Luzerne, trèfle violet) sont de bons compagnons de l'ensilage de maïs

- Apport d'azote (dont N dégradable),
- Economie de tourteau (- 10 t sur un hiver pour un troupeau de 50 VL),
- Pas d'effet sensible sur la production du lait sauf avec les foins,

Problème de la qualité des fourrages conservés (récolte, conservation)

	Enshage - enrubannage	
Tx soja	-1 à - 1,5 kg	
Lait	ns	
	Rouillé et al (2010)	

- Intérêt de la luzerne déshydratée
 - Atouts nutritionnels,
 - Plus de protéines à l'hectare,
 - Mais prix élevé

13 t MS/ha	Protéines métaboliques (eq ha soja)
Vert	1,8
Déshydraté	2,5

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

11

Valorisation des légumineuses fourragères en association avec des graminées au pâturage

Association graminées et trèfle blanc

 + 1 à + 3 kg lait /vache et par jour mais la productivité par ha peut être plus faible que celle du RGA fertilisé,

Praires multi espèces

• Plus de lait par vache et plus de lait par unité de surface (accroissement de la productivité du fourrage et donc du nombre de journées de pâturage par ha)

	RGA	RGA + trèfles
Lait (kg/jour)	16,9	17,8
Jour pâturage	749	816
Lait (t/ha/saison)	14,0	16,1
(Delagarde et al., 2014)	MultiSward	

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

Les légumineuses fourragères riches en tanins condensés

Des fourrages peu utilisés (en France)

- Lotier pendiculé et corniculé, Sulla, Sainfoin : rendements / pérennité,
- TC: Forte variabilité des concentrations (0,6 à 3 % MS) et des structures physiques donc des propriétés

Propriétés anthelminthiques (strongles gastro intestinaux)

- Perturbation de la biologie des nématodes,
- Stimulation directe de l'immunité de l'hôte ?
- Extraction de tanins et distribution aux animaux commercialisation de pellets

Effets nutritionnels et zootechniques

- Forte réduction de la dégradabilité des protéines,
- Réduction de la production de CH4 (mais pour des doses d'incorporation élevées),
- Effets sur la production laitière restent à démontrer

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2019

13

Légumineuses et adaptation des calendriers fourragers au changement climatique

Des espèces permettant une première adaptation des systèmes fourragers face au changement climatique

- Résistance à la sécheresse : grandes légumineuses (luzerne, trèfle violet),
- Résistance à des températures élevées : petites légumineuses (T. Blanc, lotier)

Pratiques des reports sur pied pour ne pas puiser dans les stocks fourragers en été

 Associations RGA-TB dont la digestibilité reste élevée même à 70j de repousses

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015

Conclusions

Les légumineuses sont bien valorisées en alimentation animale

- Incorporation de LG dans les aliments pour monogastriques et ruminants,
- LF chez les ruminants participant au re-couplage animal végétal

Un gain d'autonomie à double niveau

• Azote (vs engrais) pour la production de graines ou de fourrages, protéines (vs tourteau) pour l'alimentation des animaux

Gagner en autonomie azotée et protéique ira de pair avec

- Une réduction des besoins en énergie fossile,
- Une meilleure résilience des systèmes face au changement climatique,
- Une meilleure traçabilité de l'alimentation

Des limites à l'utilisation des légumineuses (fourragères) en élevage

- Productivité des surfaces (génétique, culture, récolte/conservation),
- Valeur nutritionnelle de la luzerne,
- Disponibilité des matières premières sur les marchés.

Les légumineuses pour des systèmes agricoles et alimentaires durables - 14 décembre 2015